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1 Introduction

Charged black holes in four-dimensional N = 2 supergravity have attracted much atten-

tion in recent years. In particular, it is expected that the (indexed) entropy of N = 2

supersymmetric black holes may be understood from a microscopic construction. From

the macroscopic viewpoint, it is of much interest to understand the higher curvature cor-

rections. Higher curvature corrections in regular Einstein gravity black hole solutions and

their thermodynamic properties, have been studied as of the mid-1980’s [1]. There, a solu-

tion in all space is obtained by treating the higher curvature term as a small perturbation.

For higher curvature corrections of four-dimensional N = 2 supergravity, the horizon ge-

ometry and entropy of supersymmetric black holes have been studied a decade ago [2, 3].

The same have been studied recently, for extremal non-supersymmetric black holes [4, 5].

Several works have considered the interpolation of supersymmetric horizon solutions in

this theory to asymptotically flat space at infinity [6–9]. In this work we consider N = 2

supergravity in four dimensions with small R2 curvature corrections. We construct large

charge extremal supersymmetric and non-supersymmetric black hole solutions in all space,

and analyze their thermodynamic properties.

Note that the R2-terms considered in this paper are F -terms. One generally expects

also D-term corrections, which are not taken into account here. For supersymmetric black

holes, it is conjectured that such terms do not contribute to the entropy [10].

The paper is organized as follows: In section 2 we give a brief review of four-dimensional

N = 2 supergravity with R2-terms. In section 3 we discuss the framework and method for

constructing the large charge black hole solutions. In section 3.2 we present the solutions

and their thermodynamic properties in the case of supersymmetric black holes with R2-

terms. In section 3.2 we do the same for extremal non-supersymmetric black holes with

R2-terms.

In the paper we will use a, b, . . . = 0, 1, 2, 3 to denote the tangent space indices, cor-

responding to the indices µ, ν, . . . of the space-time coordinates (t, r, φ, θ). The exception
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are i, j = 1, 2 which are gauge SU(2) indices, and α = 1, 2 which is a global SU(2) indices.

The sign conventions for the curvature tensors follow [3].

2 R
2-terms in N = 2 supergravity — A brief review

We will consider N = 2 Poincaré supergravity coupled to NV Abelian N = 2 vector mul-

tiplets. N = 2 Poincaré supergravity is a supersymmetric extension of Einstein-Maxwell

gravity, adding two spin 3/2 gravitini to the graviton and (gravi-)photon. N = 2 Poincaré

supergravity can be formulated as a gauge fixed version of N = 2 conformal supergravity

coupled to an N = 2 Abelian vector multiplet (see [3] for a comprehensive review).

The on-shell field content of the vector multiplet is a complex scalar, a doublet of Weyl

fermions, and a vector gauge field. We will consider NV + 1 vector multiplets, and will

denote by XI , I = 0 . . . NV , the scalars (moduli) in the vector multiplets. The couplings

of the vector multiplets are encoded in a prepotential F (XI), which is a homogenous of

second degree holomorphic function.

The N = 2 conformal supergravity multiplet (Weyl multiplet) is denoted by W abij .

It consists of gauge fields for the local symmetries: translations (P ), Lorentz transforma-

tions (M), dilatations (D), special conformal transformations (K), U(1) transformations

(A), SU(2) transformations (V ), and supertransformations (Q,S). In the theory with-

out R2-terms, the Weyl multiplet appears in the Lagrangian through the superconformal

covariantizations. In order to get the R2-terms, one adds explicit couplings to the Weyl

multiplet. This appears in the form of a background chiral multiplet, which is equal to

the square of the Weyl multiplet W 2. The lowest component of the chiral multiplet is a

complex scalar denoted Â. The prepotential F (XI , Â) describes the coupling of the vector

multiplets and the chiral multiplet. One introduces the notation:

FI ≡ ∂

∂XI
F (XI , Â), F bA ≡ ∂

∂Â
F (XI , Â) , (2.1)

and similarly for higher order and mixed derivatives.

The bosonic part of the N = 2 conformal supergravity Lagrangian is

8πe−1L = −i(X̄IFI − XI F̄I)

(
1

6
R − D

)
+

+

(
iDaX̄IDaFI +

i

4
FIJ

(
F−I

ab − 1

4
X̄IT−

ab

)(
F ab−J − 1

4
X̄JT ab−

)
+

+
i

8
F̄I

(
F−I

ab − 1

4
X̄IT−

ab

)
T ab− +

i

32
F̄ T−

abT
ab− − i

8
FIJY I

ijY
ijJ +

− i

8
F bA bA(B̂ijB̂

ij − 2F̂−
abF̂

ab−) +
i

2
F̂ ab−F bAI

(
F−I

ab − 1

4
X̄IT−

ab

)
+

− i

4
B̂ijF bAIY

ijI +
i

2
F bAĈ + h.c.

)
+ Lcm .

(2.2)

e ≡
√

|det(gµν)| where gµν is the curved metric, R is the Ricci scalar, D is an auxiliary real

scalar field of the Weyl multiplet, Da is the covariant derivative with respect to all super-

– 2 –



J
H
E
P
0
5
(
2
0
0
9
)
0
4
1

conformal transformations, Da is the covariant derivative with respect to P,M,D,A, V -

transformations, F−I
ab is the anti-selfdual part of the vector field strength, T−

ab is an anti-

selfdual antisymmetric auxiliary field of the Weyl multiplet, and Y I
ij are real SU(2) triplets

of auxiliary scalars of the vector multiplet. The hatted fields are components of the chiral

multiplet W 2, with their bosonic parts given by

θ0 Â = T−
abT

ab−

θ2 B̂ij = −16R(V )(ij)abT
ab−

F̂ ab− = −16R(M) ab
cd T cd−

θ4 Ĉ = 64R(M) ab−
cd R(M)cd−ab + 32R(V ) i−

ab j R(V )abj−
i − 16T ab−DaD

cT+
cb .

(2.3)

T+
ab = T̄−

ab is the selfdual counterpart of the auxiliary field, R(V ) i
ab j is the field strength of

the SU(2) transformations, R(M) cd
ab is the modified Riemann curvature and R(M) cd−

ab

is the anti-selfdual projection in both pairs of indices. The bosonic part of R(M) cd
ab is

given by1

R(M) cd
ab = R cd

ab − 4f
[c

[a δ
d]
b] +

1

32
(T−

abT
cd+ + T+

abT
cd−) , (2.4)

where R cd
ab is the Riemann tensor, and f c

a is the connection of the special conformal

transformations, determined by the conformal supergravity conventional constraints, with

the bosonic part:1

f c
a =

1

2
R c

a − 1

4

(
D +

1

3
R

)
δc
a +

1

2
⋆R(A) c

a +
1

32
T−

abT
cb+ , (2.5)

where R c
a is the Ricci tensor, and ⋆R(A)ab is the Hodge dual of the field strength of the U(1)

transformations. Note that the T 2-terms in R(M) cd
ab cancel exactly the T 2 contribution

from f c
a . Finally, Lcm denotes additional terms belonging to a compensating multiplet,

that add some missing degrees of freedom needed for Poincaré supergravity, and take care

of the D field appearing linearly in the Lagrangian. We discuss two equivalent possibilities:

a nonlinear multiplet and a hypermultiplet.

The bosonic content of the nonlinear multiplet is a real vector field Va, a complex

antisymmetric SU(2) triplet of scalars Mij , and an SU(2) matrix of scalars Φi
α. These are

subject to the constraint:

− 1

3
R − D + DaVa −

1

2
V aVa −

1

4
MijM̄

ij + DaΦi
αDaΦ

α
i = 0 . (2.6)

In the absence of R2-terms this constraint may be imposed by

Lcm = i(X̄IFI −XI F̄I)

(
− 1

3
R−D +DaVa −

1

2
V aVa −

1

4
MijM̄

ij + DaΦi
αDaΦ

α
i

)
. (2.7)

This cancels the D field in the first line of the Lagrangian (2.2), and leaves −i(X̄IFI −
XI F̄I)R/2 as the Einstein-Hilbert term. In the presence of R2-terms the above Lcm does

1We have assumed the K-gauge fixing which will be defined later (2.10).
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not suffice, and one must also substitute the D field appearing in the hatted fields (2.3) in

the Lagrangian using (2.6).

Alternatively, one may use a hypermultiplet as the compensating multiplet [6]. The

bosonic content of the hypermultiplet are scalars A Γ
i with Γ,∆ = 1 . . . 2r and r is an

integer. We have

Lcm = −1

2
Ω̄Γ∆DaA

Γ
i DaAi∆ +

1

2
χ

(
1

3
R + D

)
, (2.8)

where Ω̄Γ∆ is a covariantly constant antisymmetric tensor, and the hyper-Kähler potential

χ is defined by

χ =
1

2
Ω̄Γ∆A Γ

i Ai∆ . (2.9)

In order to obtain Poincaré supergravity one gauge fixes the bosonic fields (in addition

there is a gauge fixing of fermionic fields):

K−gauge : ba = 0

A−gauge : X0 = X̄0 > 0

V −gauge : Φi
α = δi

α (nonlinear multiplet)

A Γ
i = δi

Γ

√
1

2
A ∆

j Aj
∆ (hypermultiplet) , (2.10)

where ba is the connection of the dilatations. Note that we have left out the D-gauge,

which will be discussed later.

3 Large charge N = 2 black hole solutions with R
2-terms

We assume a prepotential of the form:

F (X, Â) =
DABCXAXBXC

X0
+ ǫ

DAXA

X0
Â , (3.1)

where DABC is symmetric in all indices. The second term describes R2 couplings in the

Lagrangian. It may arise as a gs correction in the large volume limit2 of type IIA string

theory compactified on a Calabi-Yau three-fold, or as an α′ correction in heterotic string

theory compactified on K3×T 2. We will treat the higher curvature terms in the Lagrangian

as a small perturbation, in the spirit of [1]. This is valid for the exterior region of black

hole solutions in the large charge approximation. The physical dimensionless expansion

parameter is one over charge squared: Q−2. It is however convenient to express this as an

expansion in |DA| ≪ |DABC | (see also [4, 5, 7]). To make this explicit, we have inserted

the expansion parameter ǫ in front of the second term in (3.1), and at the end we will

set ǫ = 1.

We look for static spherically symmetric solutions, where the metric takes the form:

ds2 = −e−2U(r)f(r)dt2 + e2U(r)
(
f(r)−1dr2 + r2 sin2 θdφ2 + r2dθ2

)
. (3.2)

2The large Calabi-Yau volume approximation requires Im(XA/X0) ≫ 1.
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Introduce the rescaled variables:

Y I = eUXI

Υ = e2U Â

e−K = i
(
Ȳ IFI(Y,Υ) − Y IF̄I(Ȳ , Ῡ)

)
. (3.3)

The latter is called the Kähler potential.3

Consider black holes with one electric charge q0 and pA (A = 1, 2, 3) magnetic charges.

In our convention D ≡ DABCpApBpC > 0.4 For q0 > 0 one can have a supersymmetric

solution [2, 9, 11]. By reversing the sign of the charge q0, but taking the moduli to depend

on the absolute value, one can have an extremal non-supersymmetric solution [4, 5, 12].

At the R-level, i.e. without R2-terms, in addition to the sign changes, the supersymmetric

and non-supersymmetric solutions differ also in the form of the auxiliary T field. The ther-

modynamic properties of the non-supersymmetric solution can be obtained by an analytic

continuation. This is no longer true when including higher curvature corrections. We will

construct the R2-level solutions for both cases. In the following we will denote E ≡ DApA.

We are interested in black hole solutions of the R2 curvature corrected theory, to first

order in ǫ. As a starting point for our ansatz, we may take the R-level solution (ǫ = 0),

with the prepotential F (ǫ = 0) replaced by F (ǫ). This, however, proves to be insufficient,

and we need to introduce a further general linear ǫ-correction to the fields. We look for

solutions in the form:

e2U = e−K(ǫ)(1 + ǫξU (r))

f = 1 + ǫξf (r)

Y A = − i

2
yA(1 + ǫξA(r)) (no summation)

Y 0 =
1

2

√
DABCyAyByC − 4ǫDAyAΥ

y0
(1 + ǫξ0(r))

T−
01 = iT−

23 =

(
3k3

r + k3
+ sgn(q0)

k0

r + k0

)
1

r
eK(ǫ)/2(1 + ǫξT (r)) , (3.4)

where (k0, k
A) > 0 are constants with either k1 = k2 = k3 or otherwise only D333 6= 0, and

yA ≡ pA

kA
+

pA

r
(no summation)

y0 ≡ |q0|
k0

+
|q0|
r

. (3.5)

We use

Υ = −4e2U (T−
01)

2 = −4

(
3k3

r + k3
+ sgn(q0)

k0

r + k0

)2
1

r2
+ O(ǫ) , (3.6)

which is a sufficient approximation since Υ always comes with a factor of ǫ.

3The scaling X(z)I = e−K/2XI used in some previous works is not general enough.
4The common convention uses D < 0 and a reversed sign for q0.
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The event horizon is located at r = 0. In order for the perturbative expansion to be

valid, we require |ǫξ(r)| ≪ 1 for all ξ-functions for r ≥ 0. In addition we set the boundary

conditions: limr→∞ ξ(r) = 0. This gives an asymptotically flat solution.

Let us introduce the dual field strength:

G−
abI = 2i

∂(e−1L)

∂F ab−I
= FIJF−J

ab +
1

4
(F̄I − FIJX̄J)T−

ab + F bAI
F̂−

ab , (3.7)

where we have considered only bosonic terms. Due to spherical symmetry we have

F−I
23 = −iF−I

01

G−
23I = −iG−

01I . (3.8)

The field strengths F−I
01 may be extracted from the following equations:

2(ImFIJ )F−J
01 = G23I − F̄IJF J

23 +
1

2
Im

( (
FI + FIJX̄J − 64F bAI

(2C0101 − D)
)
T−

01

)
, (3.9)

where we used spherical symmetry and

R(M)mn
pq = Cmn

pq + Dδ
[m
[p δ

n]
q] − 2δ

[m
[p

⋆R(A)
n]

q] , (3.10)

where Cab
cd is the Weyl tensor. The magnetic parts of the field strengths are obtained

from Bianchi identities, which for a static spherically symmetric metric give:

F I
23 =

1

r2
e−2UpI

G23I =
1

r2
e−2UqI . (3.11)

For our choice of charges, and the complex-valued form of the prepotential (3.1) and the

ansatz (3.4) we get

F−0
01 =

1

2F00

(
iG230 − iF0AFA

23 +
1

2

(
F0 + F0IX̄

I − 64F bA0(2C0101 − D)
)
T−

01

)

F−A
01 =

i

2
FA

23 . (3.12)

For the U(1) and SU(2) connections we assume

Aa = 0

V i
a j = 0 . (3.13)

The equation of motion for the SU(2) connection is always satisfied by the vanishing SU(2)

connection, for a bosonic background and with either the V -gauge for the nonlinear mul-

tiplet (2.10) or covariantly constant hypermultiplet scalars. This is because the SU(2)

connection and its derivatives, appear then in the Lagrangian (2.2) always in at least a

quadratic form.5 The vanishing of the SU(2) connection implies also Y I
ij = 0 [13].

5More generally, the SU(2) field equations are automatically satisfied since the solution is a singlet under

the SU(2) symmetry.

– 6 –



J
H
E
P
0
5
(
2
0
0
9
)
0
4
1

When using the nonlinear multiplet, the auxiliary field D may be determined by the

constraint on the nonlinear multiplet (2.6). We assume

Va = 0

Mij = 0

Φi
α = δi

α , (3.14)

where the later equation is the V -gauge. The equations of motion for Mij and Φi
α are

trivially satisfied by the above assumption, where for the latter we assume a vanishing

SU(2) connection. We therefore remain with the constraint:

D = −1

3
R . (3.15)

When using the hypermultiplet, we assume covariantly constant hypermultiplet scalars:

DaA
Γ

i = 0 . (3.16)

The equation of motion for the hyperscalars then gives (3.15). Solving the other equations

of motion we will find that for all our cases:

χ = −2 + O(ǫ2) . (3.17)

For our ansatz to constitute a solution, it must satisfy the equations of motion for the

metric,6 the moduli Y I , the auxiliary field T−
01, the U(1) connection Aa, and either Va for

the nonlinear multiplet or the auxiliary field D for the hypermultiplet. In the cases that

we solved, we observed that when using the hypermultiplet, the equation of motion for D

has an overall factor of (k3 − k0)
2, after substituting the ansatz. For k3 = k0, one has to

take this limit only after solving the equations of motion, in order not to lose a constraint.

From the Einstein-Hilbert term in the Lagrangian (2.2), one sees that “Newton’s con-

stant” is given by the unscaled Kähler potential:

G−1
N = e−K = i

(
X̄IFI(X, Â) − XI F̄I(X, Â)

)
= 1 − ǫξU (r) . (3.18)

Usually one fixes GN = 1 as the dilatational D-gauge choice. This, however, is too re-

strictive and does not always allow a solution. Therefore GN is a function of the radial

coordinate, resembling the case of dilaton gravity. The metric in the Einstein frame is

given by

gE
µν = G−1

N gµν . (3.19)

The ADM mass (in Planck units) for a non-normalized metric is given by

gE
tt

∣∣
r→∞

= gE
tt (∞)

(
1 − gE

rr(∞)−1/2 2M

r
+ O

(
1

r2

))
. (3.20)

One may see this by applying the coordinate transformation t → (−gE
tt (∞))−1/2t, r →

gE
rr(∞)−1/2r to get the conventionally normalized line element.

6For a discussion on the derivation of the metric field equations, see [14, appendix B].
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The central charge is the conserved charge associated with the graviphoton:

Z =
1

4π

∮

S2
∞

eK/2(F−IFI(X, Â) − G−
I XI) =

1

4π

∮

S2
∞

eK/2(F IFI(X, Â) − GIX
I) =

= lim
r→∞

eK/2(pIFI(X, Â) − qIX
I) = lim

r→∞
eK/2(pIFI(Y,Υ) − qIY

I) , (3.21)

where the first equality is valid due to the N = 2 supersymmetry of flat space at infinity.

This also allows to express Z in terms of the auxiliary T field:7

Z = − i

16π

∮

S2
∞

e−K/2T− = −1

4
lim

r→∞
e−K/2r2e2UT−

01 . (3.22)

Z is determined by the charges and the asymptotic moduli values at infinity, and does not

receive higher curvature corrections. It reads

|Z| =

√
2

4
(|h0|DABChAhBhC)1/4|3k3 + sgn(q0)k0| =

1

4
|3k3 + sgn(q0)k0| , (3.23)

where

(h0, h
A) ≡

(
q0

k0
,
pA

kA

)
(no summation) , (3.24)

and where in the second equality of (3.23) we imposed the normalization gtt(∞) = −1:

4|h0|DABChAhBhC = 1 . (3.25)

The supersymmetry algebra requires M ≥ |Z|.
Our calculations were done using Maple with GRTensor.

3.1 Supersymmetric black holes

In the supersymmetric case (q0 > 0) with k1 = k2 = k3, the solution reads

ξf (r) = ξ0(r) = ξ1(r) = ξ2(r) = ξ3(r) = 0

ξU (r) =
8Er(k3)2(k3 − k0)(9rk

3 − rk0 + 8k3k0)

D(r + k3)4(r + k0)2

ξT (r) =
4Er(k3)2(k3 − k0)P (r)

D(r + k3)4(r + k0)2(3rk3 + rk0 + 4k3k0)
, (3.26)

where

P (r)=144r3k3−16r3k0−27r2(k3)2+226r2k3k0−7r2k2
0−100r(k3)2k0+100rk3k2

0−64(k3)2k2
0 .

(3.27)

This can be obtained either from the full second order equations of motion, or from the

first order N = 1 supersymmetry equations [6] similarly to [9].8 At the horizon (r = 0)

we have:

ξU(0) = ξT (0) = 0 . (3.28)

7The T field differs from the graviphoton eK(F−IFI − G−

I XI), when R2-terms are included.
8The case discussed in [9] with DABC = D123 and constant Y 1, Y 2, is not soluble in our approximation

scheme.
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The horizon solution agrees with previous results [2].

The entropy is given by the Wald formula for the supersymmetric case with R2-

terms [2]:

S = lim
r→0

(
A

4GN
− 4A · Im

(
F bA|T

−
01|2

))
, (3.29)

where A is the area of the event horizon. Plugging in the solution gives the expected result:

S = 2π
√

q0D
(

1 +
128E

D

)
+ O(Q−2) ≈ 2π

√
q0(D + 256E) . (3.30)

In the supersymmetric case the ADM mass saturates the BPS bound:

M = |Z| =
1

4
(3k3 + k0) . (3.31)

This result is exact and is identical to that of the R-level.

Note that in the special case k3 = k0, the ξ-functions vanish in all space. This means

that the R2-level solution is simply the R-level ansatz with F (ǫ = 0) replaced by F (ǫ).

One may ask whether this behavior continues to higher orders in ǫ. Assuming that the

prepotential (3.1) itself does not contain higher orders in ǫ, the solution to order ǫ2 would be

ξf (r) = ξ1(r) = ξ2(r) = ξ3(r) = ξ0(r) = 0

ξU (r) = ǫ
65536E2rk7

0

D2(r + k0)8

ξT (r) = ǫ
32768E2rk6

0(7r − k0)

D2(r + k0)8
. (3.32)

3.2 Non-supersymmetric black holes

For simplicity, we consider the cases with DABC = D333 or DABC = D123, and DA = D3

and k1 = k2 = k3 = k0. At the R-level, the last condition gives the non-supersymmetric

version of the double-extremal black hole. We were able to find similar solutions for different

combinations of DABC ’s and DA’s, providing that for each term such as D3 there is a at

least one corresponding term DAB3 (this was not required in the supersymmetric case).

We then give the generalization of the DABC = D333 case to arbitrary k′s.

In the non-supersymmetric case (q0 < 0) with k1 = k2 = k3 = k0, the solution reads

ξU (r) =
64Ek4

0

D(r + k0)4

ξf (r) =
8Ek0(4r

3 + 25r2k0 + 60rk2
0 + 30k3

0)

15D(r + k0)4

ξ0(r) =
4E

(
−120r(r + k0)

3 ln r+k0

r + 118r3k0 + 297r2k2
0 + 224rk3

0 + 240k4
0

)

15D(r + k0)4

ξT (r) =
4E

(
120r(r + k0)

3 ln r+k0

r − 118r3k0 − 297r2k2
0 + 736rk3

0 − 120k4
0

)

15D(r + k0)4
. (3.33)
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For DABC = D333 and DA = D3:

ξ3(r) =
4E

(
−120r(r + k0)

3 ln r+k0

r + 108r3k0 + 267r2k2
0 + 194rk3

0 + 270k4
0

)

45D(r + k0)4
, (3.34)

and ξ1(r), ξ2(r) are irrelevant. For DABC = D123 and DA = D3:

ξ3(r) =
4E

(
−840r(r + k0)

3 ln r+k0

r + 856r3k0 + 2169r2k2
0 + 1658rk3

0 + 150k4
0

)

15D(r + k0)4

ξ1(r) = ξ2(r) =
4E

(
360r(r + k0)

3 ln r+k0

r − 374r3k0 − 951r2k2
0 − 732rk3

0 + 60k4
0

)

15D(r + k0)4
. (3.35)

At the horizon (r = 0) we have,

ξU(0) =
64E

D
ξf (0) =

16E

D
ξ0(0) =

64E

D
ξT (0) = −32E

D . (3.36)

For DABC = D333 and DA = D3:

ξ3(0) =
24E

D . (3.37)

For DABC = D123 and DA = D3:

ξ3(0) =
40E

D
ξ1(0) = ξ2(0) =

16E

D . (3.38)

The latter case agrees with [5], where the horizon solutions were obtained by extremizing

the entropy function.9 Note that the radial derivatives of our solutions for ξA(r), ξ0(r), ξT (r)

diverge at r = 0. The curvature, however, is regular.

The entropy formula that we use in the supersymmetric case (3.29), is no longer valid in

the non-supersymmetric case. In the latter case, one can use either Sen’s entropy function

method [4, 5], or the Wald entropy formula for the non-extremal case with R2-terms [14]:

S = lim
r→0

(
A

4GN
− 4A · Im

(
F bA(|T−

01|2 + 16C0101 + 16D)
))

. (3.39)

In fact, in our solutions C0101,D do not contribute to the entropy to first order in ǫ, and

thus the formula does reduce to the supersymmetric one. Note also that GN (0) 6= 1.

Plugging in the solution gives:

S = 2π
√

−q0D
(

1 +
40E

D

)
+ O(Q−2) , (3.40)

9Note that [5] uses a different scaling than (3.3).
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as in [4, 5]. As discussed therein, this differs from the statistical microscopic entropy [15],

due to higher curvature D-terms, which are not taken into account here. Using the entropy

function method with our first order solutions, one can get the entropy to second order:

S = 2π
√

−q0D
(

1 +
40E

D − 8576E2

D2

)
+ O(Q−4) . (3.41)

The central charge reads

|Z| =

√
2

2
(−q0D)1/4 =

1

2
k0 , (3.42)

and the ADM mass takes the form:

M =
√

2(−q0D)1/4

(
1 − 12E

5D

)
+ O(Q−3) = k0

(
1 − 12E

5D

)
+ O(Q−3) . (3.43)

Here the mass gets an R2 curvature correction. This correction comes from the functions

ξf (r), ξ0(r), ξA(r), which vanished in the supersymmetric case. The higher curvature cor-

rection changes the mass in an opposite direction to the entropy. For the mass to decrease

as conjectured in [16], D and E must have the same sign. This would also mean that the

entropy increases.

In the non-supersymmetric case (q0 < 0) with DABC = D333 and DA = D3 and

arbitrary k’s, the solution is given in the appendix. The horizon limit, and the entropy are

the same as in the k3 = k0 case. The central charge reads

|Z| =
1

4
|3k3 − k0| , (3.44)

and the ADM mass takes the form:

M =
1

4
(3k3 + k0) (3.45)

+
4Ek3k0

(
12(k3)3k0 ln k3

k0
−(k3 − k0)(3(k

3)3 + 13(k3)2k0 − 5k3k2
0 + k3

0)
)

D(k3 − k0)5
+ O(Q−3).

The mass correction term has the same behavior as in the k3 = k0 case.
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A The non-supersymmetric solution with arbitrary k’s

In the non-supersymmetric case (q0 < 0) with DABC = D333 and DA = D3 and arbitrary

k’s, the solution reads

ξU (r) =
8D3(k

3)2(9r2(k3)2−2r2k3k0 + r2k2
0 + 16r(k3)2k0 + 8(k3)2k2

0)

D333(p3)2(r + k3)4(r + k0)2

ξf (r) =
16D3(k

3)2k0

(
2k3(r + k3)2P1(r) ln k3(r+k0)

k0(r+k3)
+ r(k3−k0)P2(r)

)

D333(p3)2r2(r + k3)2(k3−k0)5

ξ3(r) =
8D3(−2(r + k3)2(r + k0)L3(r) + r(k3)2k0(k

3−k0)P5(r))

3D333(p3)2r2k0(r + k3)3(r + k0)(k3−k0)6

ξ0(r) =
4D3(2(r + k3)2L0(r) + rk3k0(k

3−k0)P8(r))

D333(p3)2r2k3k0(r + k3)3(r + k0)(k3−k0)6

ξT (r) =
4D3(2(r + k3)3LT (r) + rk3k0(k

3−k0)P12(r))

D333(p3)2r2k3k0(r + k3)4(r + k0)2(k3−k0)6(3rk3−rk0 + 2k3k0)
, (A.1)

and ξ1(r), ξ2(r) are irrelevant, and where

L3(r) = (k3)3k2
0P3(r) ln

k3(r+k0)

k0(r+k3)
+r3(k3)3P4(r) ln

r+k3

r+k0

+r3(k3+k0)(k
3−k0)

6 ln
r+k3

r

L0(r) = 2(k3)4k2
0P6(r) ln

k3(r+k0)

k0(r+k3)
+(k3)4r3P7(r) ln

r+k3

r+k0

−r3(k3+k0)(k
3−k0)

6(rk3+rk0+2k3k0) ln
r+k3

r

LT (r) = 2(k3)4k2
0(r+k0)P9(r) ln

k3(r+k0)

k0(r+k3)
+2r3(k3)4(r+k0)P10(r) ln

r+k3

r+k0

+2r3(r+k0)(k
3+k0)(k

3−k0)
6P11(r) ln

r+k3

r
P1(r) = 2r(k3)2+8rk3k0+2rk2

0+3(k3)2k0+9k3k2
0

P2(r) =−12r2(k3)2−12r2k3k0−20r(k3)3−25r(k3)2k0

−4rk3k2
0+rk3

0−6(k3)4−18(k3)3k0

P3(r) =−6r2(k3)3−6r2(k3)2k0+66r2k3k2
0+6r2k3

0+3r(k3)3k0+30r(k3)2k2
0+27rk3k3

0

+(k3)4k0+10(k3)3k2
0+9(k3)2k3

0

P4(r) =−(k3)4+5(k3)3k0+9(k3)2k2
0−21k3k3

0−12k4
0

P5(r) = 2r4(k3)4−8r4(k3)3k0+32r4(k3)2k2
0+60r4k3k3

0−6r4k4
0+4r3(k3)5

−21r3(k3)4k0+103r3(k3)3k2
0+143r3(k3)2k3

0+57r3k3k4
0−6r3k5

0+2r2(k3)6

+−12r2(k3)5k0+88r2(k3)4k2
0+162r2(k3)3k3

0+126r2(k3)2k4
0−6r2k3k5

0

+10r(k3)6k0−26r(k3)5k2
0+189r(k3)4k3

0−9r(k3)3k4
0+45r(k3)2k5

0−9rk3k6
0

+2(k3)6k2
0+20(k3)5k3

0+18(k3)4k4
0
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P6(r) = 2r3(k3)3−12r3(k3)2k0−48r3k3k2
0−2r3k3

0−r2(k3)4−15r2(k3)3k0−42r2(k3)2k2
0

−59r2k3k3
0−3r2k4

0−2r(k3)4k0−22r(k3)3k2
0−38r(k3)2k3

0−18rk3k4
0−(k3)4k2

0

−10(k3)3k3
0−9(k3)2k4

0

P7(r) = r(k3)4−4r(k3)3k0−2r(k3)2k2
0+36rk3k3

0+9rk4
0+2(k3)4k0+2(k3)3k2

0+6(k3)2k3
0

+18k3k4
0+12k5

0

P8(r) = 2r4(k3)6−12r4(k3)5k0+106r4(k3)4k2
0+76r4(k3)3k3

0−18r4(k3)2k4
0+8r4k3k5

0

−2r4k6
0+4r3(k3)7−25r3(k3)6k0+305r3(k3)5k2

0+228r3(k3)4k3
0+40r3(k3)3k4

0

+13r3(k3)2k5
0−5r3k3k6

0+2r2(k3)8−6r2(k3)7k0+264r2(k3)6k2
0+316r2(k3)5k3

0

+138r2(k3)4k4
0+10r2(k3)3k5

0−4r2(k3)2k6
0+22r(k3)8k0−6r(k3)7k2

0

+354r(k3)6k3
0−34r(k3)5k4

0+80r(k3)4k5
0−16r(k3)3k6

0+4(k3)8k2
0

+40(k3)7k3
0+36(k3)6k4

0

P9(r) =−6r4(k3)4−4r4(k3)3k0+96r4(k3)2k2
0+36r4k3k3

0−2r4k4
0−5r3(k3)4k0

+81r3(k3)3k2
0+249r3(k3)2k3

0+35r3k3k4
0+3r2(k3)5k0+46r2(k3)4k2

0

+154r2(k3)3k3
0+182r2(k3)2k4

0+15r2k3k5
0+5r(k3)5k2

0+55r(k3)4k3
0+95r(k3)3k4

0

+45r(k3)2k5
0+2(k3)5k3

0+20(k3)4k4
0+18(k3)3k5

0

P10(r) =−r2(k3)5+5r2(k3)4k0+8r2(k3)3k2
0−28r2(k3)2k3

0−27r2k3k4
0+3r2k5

0−2r(k3)5k0

+8r(k3)4k2
0+4r(k3)3k3

0−72r(k3)2k4
0−18rk3k5

0−2(k3)5k2
0−2(k3)4k3

0−6(k3)3k4
0

−18(k3)2k5
0−12k3k6

0

P11(r) = r2(k3)2+r2k2
0+2r(k3)2k0+2rk3k2

0+2(k3)2k2
0

P12(r) =−4r7(k3)7+16r7(k3)6k0−56r7(k3)5k2
0−268r7(k3)4k3

0−20r7(k3)3k4
0

+24r7(k3)2k5
0−16r7k3k6

0+4r7k7
0−12r6(k3)8+50r6(k3)7k0−214r6(k3)6k2

0

−1226r6(k3)5k3
0−724r6(k3)4k4

0+86r6(k3)3k5
0−46r6(k3)2k6

0+2r6k3k7
0+4r6k8

0

+132r5(k3)9−678r5(k3)8k0+1166r5(k3)7k2
0−3778r5(k3)6k3

0−2062r5(k3)5k4
0

−450r5(k3)4k5
0−86r5(k3)3k6

0−22r5(k3)2k7
0+18r5k3k8

0−31r4(k3)10

+586r4(k3)9k0−2706r4(k3)8k2
0+2614r4(k3)7k3

0−9328r4(k3)6k4
0+822r4(k3)5k5

0

−726r4(k3)4k6
0−70r4(k3)3k7

0+39r4(k3)2k8
0−70r3(k3)10k0+678r3(k3)9k2

0

−3926r3(k3)8k3
0+1350r3(k3)7k4

0−7394r3(k3)6k5
0+1922r3(k3)5k6

0−610r3(k3)4k7
0

+50r3(k3)3k8
0−80r2(k3)10k2

0+176r2(k3)9k3
0−2842r2(k3)8k4

0+152r2(k3)7k5
0

−2324r2(k3)6k6
0+728r2(k3)5k7

0−130r2(k3)4k8
0−40r(k3)10k3

0−200r(k3)9k4
0

−776r(k3)8k5
0−200r(k3)7k6

0−80r(k3)6k7
0+16r(k3)5k8

0−8(k3)10k4
0

−80(k3)9k5
0−72(k3)8k6

0 . (A.2)
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